به لطف پیشرفت های انجام شده در قدرت محاسباتی و برنامه های یادگیری ماشین ، انسانها واقعاً در یک انقلاب جهانی فناوری زندگی می کنند. دو دهه اول قرن 21 شاهد پیشرفتهای چشمگیری در تحقیقات هوش مصنوعی (AI) بوده ایم. ثابت شده است که یادگیری ماشینی یکی از موفق ترین و گسترده ترین کاربردهای فناوری است که دامنه وسیعی از صنایع را تحت تأثیر قرار داده و میلیاردها کاربر را هر روز تحت تأثیر قرار می دهد. یادگیری ماشین زیرمجموعه ای از هوش مصنوعی است که شامل مطالعه و استفاده از الگوریتم ها و مدل های آماری برای سیستم های رایانه ای برای انجام کارهای خاص بدون تعامل انسان است. استفاده از یادگیری ماشینی دریچه ای را برای فناوری های آینده گرایانه باز می کند که مردم در زندگی روزمره خود از آن استفاده می کنند.
دستیارهای صوتی در حال حاضر در همه جا حضور دارند. دستیارهای صوتی مشهوری مانند Apple’s Siri ، Google Assistant ، Amazon’s Alexa و … راه را برای بخشی از مکالمه عمومی افراد هموار می کنند. الگوریتم یادگیری ماشین در پشت همه این دستیارهای صوتی کار می کند تا گفتار را با استفاده از پردازش زبان طبیعی (NLP) تشخیص دهد. سپس ، گفتار را با استفاده از یادگیری ماشین به اعداد تبدیل کرده و بر این اساس پاسخی را تنظیم می کند. همچنین از NLP برای ترجمه اطلاعات غیر قانونی لغات در قراردادها به زبان ساده برای تهیه اطلاعات استفاده می شود. محققان انتظار دارند با پیشرفت تکنیک های یادگیری ماشین ، این فناوری در آینده هوشمندانه تر شود.
فناوری در سیستم بازاریابی در حال بدست آوردن جایگاه خود است. با استفاده از ویژگی های یادگیری ماشینی ، صنعت بازاریابی مشتریان را بر اساس داده های رفتاری و مشخص تقسیم می کند. سیستم عامل های تبلیغات دیجیتال به بازاریابان اجازه می دهد تا بر روی مجموعه مخاطبان با تأثیر محصول مرتبط تمرکز کنند. آنها نیازهای مشتری را درک می کنند و بر این اساس با تبلیغات بهتر اقدام به فروش کالا و خدمت می کنند.
شرکت های بزرگی که درگیر تعاملات مالی و بانکی هستند از یادگیری ماشینی برای کشف تقلب و کلاهبرداری استفاده می کنند. این امر به شرکت ها کمک می کند تا مصرف کنندگان را در امان نگه دارند. یادگیری ماشینی همچنین می تواند برای شرکتهایی که معاملات کارت اعتباری را انجام می دهند ارزشمند باشد. این فناوری برای پرچم گذاری معاملات که براساس قوانین خاص و بر طبق قوانین شرکت جعلی است ، آموزش دیده است. با شناسایی چنین امور بعد می توان جلوی گرفتار شدن شرکت ها در برابر ضرر بزرگ را گرفت. علاوه بر این ، یک شرکت همچنین می تواند با چشم انداز رقابتی و وفاداری مصرف کننده خود ، اطلاعات کسب کند و فروش یا تقاضا را در زمان واقعی با یادگیری ماشین پیش بینی کند.
اتومبیل های خودران یکی از فن آوری های جذاب در زندگی روزمره امروزه است که در آن یادگیری ماشین در سطح بالایی استفاده می شود. زیبایی اتومبیل های خودران این است که از هر سه جنبه اصلی یادگیری ماشین یعنی یادگیری نظارت شده ، بدون نظارت و تقویتی در کل طراحی ماشین استفاده می شود. اتومبیل های هوشمند از ویژگی های یادگیری ماشین مانند تشخیص اشیا اطراف ماشین ، یافتن فاصله با ماشین جلویی ، محل روسازی و سیگنال ترافیک ، ارزیابی وضعیت راننده و طبقه بندی صحنه استفاده می کنند. یادگیری ماشینی همچنین می تواند در مورد شرایط جاده و ترافیک در زمان واقعی به راننده مشاوره دهد.
شرکت هایی که برای ایجاد اعتماد بیشتر به صنعت حمل و نقل کار می کنند یادگیری ماشینی را به عنوان منبع اصلی برای کار خود انتخاب می کنند. برنامه های پر مصرفی مانند Uber ، Lyft ، Ola و غیره در بسیاری از محصولات خود از برنامه ریزی مسیرهای بهینه تا تعیین قیمت ها از یادگیری ماشین استفاده می کنند. قیمت پویا در سفر ، هزینه مسافر را با تغییر شرایط بازار تنظیم می کند. قیمت ها بسته به عواملی مانند زمان ، مکان ، آب و هوا ، تقاضای مشتری و غیره متفاوت است. یادگیری ماشین همچنین به رانندگان کمک می کند تا بهترین مسیر را برای رسیدن مسافران از نقطه A به B پیدا کنند.
سازمان ها می توانند از مدل های یادگیری ماشینی برای پیش بینی رفتار مشتری بر اساس داده های گذشته وی استفاده کنند. شرکت ها به دنبال صحبت با مردم در شبکه های اجتماعی می باشند و سپس افرادی را که در جستجوی محصول یا خدمات داده شده هستند ، شناسایی می کنند. به عنوان مثال ، Zappos از تجزیه و تحلیل و یادگیری ماشین برای کمک به ارائه اندازه گیری شخصی و نتیجه جستجو برای مشتریان و همچنین مدل های رفتار پیش بینی کننده استفاده می کند.
ارزش یادگیری ماشینی در مراقبت های بهداشتی در توانایی آن در پردازش مجموعه داده های عظیم فراتر از توانمندی انسان است و همچنین تجزیه و تحلیل این داده ها را به بینش بالینی قابل اعتماد تبدیل می کند که به پزشکان در درمان کمک می کند. یادگیری ماشینی در برنامه ریزی و ارائه مراقبت کمک می کند ، در نهایت منجر به نتایج بهتر ، هزینه های کمتر مراقبت و افزایش رضایت بیمار می شود. با کمک رایانه (CAD) ، یک برنامه یادگیری ماشینی نیز می تواند برای بررسی اسکن ماموگرافی زنان در پیش بینی سرطان مورد استفاده قرار بگیرد.
اتوماسیون فرآیند هوشمند (IPA) محصول همگرایی هوش مصنوعی و فناوری های مرتبط از جمله دید رایانه ، اتوماسیون شناختی و یادگیری ماشینی است. با گردآوری این فناوری ها در یک فرآیند واحد ، شرکت ها امکان اتوماسیون غنی تری را پیدا می کنند و قفل هر ارزش تجاری را برای شرکت باز می کنند. از الگوریتم یادگیری ماشین می توان در اتوماسیون ارزیابی ریسک بیمه بدون خطا از کار دستی ورود اطلاعات استفاده کرد.
یادگیری ماشینی با استفاده از چت بات های گفتگویی که به درخواست های مشتری پاسخ مربوطه را می دهند ، به پشتیبانی مشتری کمک می کند. با استفاده از مفاهیم پردازش زبان طبیعی (NLP) و تجزیه و تحلیل احساسات ، الگوریتم های یادگیری ماشین قادر به درک نیاز مشتری و لحن گفتن آنها هستند. سپس سیستم درخواست را به شخص پشتیبانی کننده مناسب مشتری هدایت می کند.
یادگیری ماشینی نقشی محوری در تأمین امنیت در اجتماعات بزرگ دارد. این فناوری یک دارایی برای کمک به جلوگیری از هشدارهای جعلی و مشکل هایی را فراهم می کند که ممکن است در محافل انسانی در رویدادهای بزرگ عمومی از امنیت بی بهره باشند. به عنوان مثال ، Evolv Technology ادعا می کند که یک سیستم امنیتی فیزیکی ارائه می دهد که 600 تا 900 نفر را در هر ساعت برای راهپیمایی ها نمایش می دهد.
هوش مصنوعی یک مبحث با پیچیدگی های خاص خود است. اما عموما تفاوت میان یادگیری ماشینی با یادگیری عمیق،
شبکه های عصبــی و… برای مردم مشخص نیســت امـــا می توانیم گفت که تمامی راهکار های هوش مصنوعی در
یادگیری ماشین و یادگیری عمیق خلاصه می شود. اما بـــرای درک بهتر هــوش مصنوعی باید تفاوت میــان این دو
را دانست. مثال های این فناوری ها در همه جا دیده می شود . این فناوری ها باعث می شود کــــه نتفلیکس برنامه
مورد علاقه بعدی شما را می داند و یا اینکه فیس بوک چطور می داند که چه کسانی در عکــس حضور دارند و …
راحت ترین راه برای درک این تفاوت این است که بدانید یادگیری عمیق در واقع نوعی از یادگیری ماشین است.
اگر بخواهیم دقیق تر بگیم یادگیری عمیق در واقع یادگیری ماسین تکامل یافته است که از یک شبکه عصبی قابل
برنامه ریزی استفاده می کند تا ماشین ها را قادر بسازد بدون کمک انسانها تصمیم گیری دقیقی بکنند. اما اگر هیچ
اطلاعاتی در این زمینه ندارید اوا یادگیری ماسینی را توضیح می دهیم.
اگر بخواهیم یک تعریف پایه از یادگیری ماشینی انجام بدهیم می توانیم بگوییم : یادگیری ماشینی الگوریتم هایی
هستند که داده ها را تجزیــه می کنند ، از آن داده ها درس مـی گیـــرند و سپــس آنچـه را که یاد گرفته اند برای
تصمیم گیری آگاهانه استفاده می کنند” برای مثال سرویس های موسیقی های در خواستی است که با توجه به سلیقه
مخاطب موزیک هایی که تازه منتشر شده را معرفی می کند این تکنیک که اغلب به عنـــوان هوش مصنوعی مورد
استفاده قرار می گیرد ، در بسیاری از سرویس هایی که توصیه های خودکار ارائه می دهنـــد ، استفاده می شود.
یادگیری ماشینی در انواع مختلفی از کسب و کار ها حضور دارد از موسســـات امنیت داده کــه بد افزار ها را
شکار می کند گرفته تا بازار بورس. الگوریتم های هوش مصنوعی برنامه ریـــزی شده انــد که به طــور مداوم
در حال یادگیری به روشی باشند که به عنوان دستیار شخصی مجازی شبیه سازی می شوند – کــاری که آنها به
خوبی انجام می دهند. وقتی پای یادگیری عمیق و شبکه های عصبی عمیق به میان می آید این فذایند یــــادگیری
جالب تر می شود.
همانطور که قبلا اشاره کردیم یادگیری عمیق در واقع نوعی از یادگیری ماشین است و بــه روشی ومشابه
عمل می کند، اما برخی اوقات عملکرد آنها متفاوت است. با اینکه یادگیری ماشیـــن یا توجه به عملکرد آنها
روز به روز بهتر می شود اما هنوز نیاز به راهنمایی انسانی دارد. یعنی اگــــر الگوریتم هوش مصنوعی
یک محاسبه نادرست انجام دهد، نیاز به یک مهندس برای مداخله و تصحیــح آن وجود دارد اما در مورد
الگوریتم های یادگیری عمیق اینگونه نیست و خود هوش مصنوعی از طــریق شبکه عصبی عمیق می تواند
خود را اصلاح کند. برای مثال اگر ما یک چراغ قوه هوشمند داشتـــه باسیم که با یادگیری ماشین کار کند
در نهایت می تواند هر عبارتی را که در آن کلمه تاریک وجــود دارد را شناسایی کند و خود را روشن کند
اما اگر همان چراغ قوه با یادگیری عمیق طراحــی شده باشد به عباراتی مانند “پریز کار نمی کند” و یا
“من نمی توانم ببینم” هم واکنش نشان می ئپده و خــود را روشن می کند . بنابراین یک مدل یادگیری عمیق
قادر است از طریق روش محاسبــات خود بیــاموزد ( تکنیکی که به نظر می رسد که دستگاه مغز خودش
را دارد.)
یک مدل یادگیری عمیق برای تجزیه و تحلیل مداوم داده ها با یک ساختار منطقی شبیه به چگونگی
تجزیه و تحلیل و نتیجه گیری یک انسان طراحی شده است.برای دستیابی به این هدف ، برنامه های
یادگیری عمیق از یــک ساختـــار لایه ای از الگوریتــــم ها،طراحی یک شبکه عصبی مصنوعی از
شبکه عصبی بیولوژیکی مغز انسان الهام می گیرد و منجــــر به فراینـــدی از یادگیری می شود که
به مراتب از مدلهای یادگیری ماشین استاندارد تواناتر است. به نام شبکه عصبـــی مصنوعی استفاده
می کنند. فرایند اینکه این مدل ها نتیجه گیری های اشتباه نکنند بسیار دشوار است و بایـــد ماننــد سایر
نمونه های هوش مصنوعی تمرین زیادی داده شوند. اما هنگامی که عملکرد صحیحی از خـــود نشان
می دهند، به عنوان یک شگفتی در دنیای علم شناخته می شود که در واقع ستون و پایه هوش مصنوعی
واقعی می باشد.یک نمونه بارز از یادگیری عمیق AlphaGo Google است که یاد گرفته تا بازی
GO را انجام دهد، این بــــازی که شبیه که نیـــاز به استدلال و منطق بالایی دارد .مدل یادگیری عمیق
Alpha Go با بازی در مقابل بازیکنان حرفه ای یاد گرفت که سطح بازی خود را ارتقاع دهد و حرکاتی
را انجام دهد که در تمرین اولیه برای آن تعریف نشده. این امر باعث شد تا Alpha Go چندین استاد
این بازی را شکست دهد .
پس در اختصار تفاوت یادگیری ماشینی با یادگیری عمیق را می توان اینگونه بیان کرد:
-یادگیری ماشین از الگوریتم هایی استفاده می کند تا داده هایی را یاد بگیرد، تجزیه تحلیل انجام دهد و بر اساس تعالیم، نصمیم گیری آگاهانه انجام دهد.
-یادگیری عمیق ساختاری از لایه های الگوریتم ایجاد می کند که یک “شبکه عصبی مصنوعی” ایجاد کند که می تواند به تنهایی یادگیری و تصمیم گیری هوشمندانه داشته باشد.
-یادگیری عمیق زیر مجموعه ای از یادگیری ماشینی است که هر دوی آنها زیر مجموعه وسیعی از هوش مصنوعی هستند. یادگیری عمیق فناوری هوش مصنوعی ایجاد می کند که بیشترینشباهت را به هوش انسانی دارد.
با وجود حجم عظیم داده هایی که توسط داده های بزرگ در حال حاضر در حال جمع آوری است
ما تحول های عظیمی را طی ده سال آینده ساهد خواهیم بود که هنوز به آنها دست نیافته ایم.
بنا به تحلیل افراد متخصص در این زمینه این یادگیری عمیق بیشترین سهم را در این فرایند خواهد
داشت.اندرو نگ ، دانشمند ارشد موتور جستجوی بزرگ چین “بایدو” و یکی از رهبران پروژه
Google Brain ، یک قیاس عالی برای یادگیری عمیق با مجله Wired به اشتراک گذاشت. او گفت:
من هوش مصنوعی را به یک فضا پیما تشبیه می کنم که هم به موتور قدرتمندی نیاز دارد و هم
به سوخت زیاد. اگر سوخت کم و موتور قدرتمند داشته باشید نمی توانید به مدار برسید و اگرشوخت
زیاد و موتور ضعیف داشته باشید حتی نمی توانید سفینه را از زمین بلند کنید بنابراین هر دو عامل
باید به اندازه کافی قوی باشد.